

Decline of Lake Michigan-Huron Levels Caused by Erosion of the St. Clair River

W.F. Baird & Associates Coastal Engineers (in association with Frank Quinn)

April 13, 2005

Outline

- Problem Definition
- Understanding of Water Balance In Great Lakes
- Possible Causes of Head Decline
- υ Four Independent Analysis
- υ Conclusions and Future Studies

Relevant Water Level Gauges in the Study Area

Head Decline Between Lakes Michigan-Huron and Erie

Historic Regime Change (IJC, 1987)

Regime Change	Date	Estimated Effect on Lake Huron Water Level (m)
6.1 m Navigation Channel Dredging	1855 to 1906	-0.11 to -0.21
Removal of Shoal from St. Clair Flats	1906	-0.01
Sinking of Steamers Fontana and Martin	1900	+0.03
Sand and Gravel Mining	1908 to 1925	-0.09
Dredging 7.6 m Navigation Channel	1930 to 1937	-0.05
Dredging 8.2 m Navigation Channel	1960 to 1962	-0.13
NET EFFECT	1855 to 1962	-0.36 to -0.46

In the Recent 30+ Years (1971 – present)

- No significant known human actions
 influencing Lake Michigan-Huron and the
 St. Clair River
- Direct impact of 1960 1962 navigation channel deepening project would have ceased to be a factor after 10 years

What Caused this Head Decline?

Post-glacial rebound impacts
 Net basin supply change and shift
 Erosion of the St. Clair River
 ???

Outline

- Problem Definition
- Understanding of Water Balance in the Great Lakes
- Possible Causes of Head Decline
- » Four Independent Analyses
- ^ν Conclusions and Future Studies

Possible Causes of Head Decline

Post-glacial rebound impacts
 Net basin supply change and shift
 Erosion/dredging in the St. Clair River

Differential Rebound

Impact in Last 30 Years

- ^v 3 cm lake level rise on Lake Erie
- ^v 1.5 cm lake level rise on Lake MH

Conclude: no significant contribution (1.5 cm) on head drop between Lake MH and Erie

Possible Causes of Head Decline

Post-glacial rebound impacts
 Net basin supply change and shift
 Erosion/dredging in the St. Clair River

Net Basin Supply (NBS)

- ^v NBS is the total net water supply to a lake
- ^v Two methods of calculating NBS
 - *Components Method (GLERL)*
 - *v* Residuals Method (EC and USACE)

NBS = P+R-E

Relative NBS (Lake Erie/Lake Huron)

Data using Components and Residual methods diverge.
_____Baird

Key Points on an NBS Shift

- Residual NBS shift is probably produced
 by the incorrect flow data
- If it is occurring (and this seems unlikely or at least unproven) NBS shift would not have a significant contribution to the observed head drop (almost certainly less than 4 cm)

Possible Causes of Head Decline

Post-glacial rebound impacts
 Net basin supply change and shift
 Erosion/dredging in the St. Clair River

Outline

- Problem definition
- Understanding of water balance in the Great Lakes
- Possible causes of head decline
- » Four independent analysis for erosion
- υ Conclusions and Future Studies

Four Independent Analyses

- Hydraulic analysis using gage relationships
- Normalization analysis using water balance equation on Lake Erie
- GIS analysis on historical bathymetry change
- Numerical modeling

Historical Change of Relationship between Heads (MH – E) and Lake Level (Cleveland)

Head Difference in Lake Level Between Lakes Huron and Erie

Four Independent Analyses

- Hydraulic analysis using gage relationships
- Normalization analysis using water balance equation on Lake Erie
- GIS analysis on historical bathymetry change
- Numerical modeling

Residual Head (Recorded Head – Normalized Head + 2.5)

Compare to IJC Estimates (1985, 1987)

Year

Key Points from Normalization Analysis

- Reproduces well the historic regime change events and diversions
- Clearly indicates continuous head decline since 1971, in which the head variation caused by natural climatic change is filtered out
- The head decline must be caused mostly by regime change of the St. Clair River

Four Independent Analyses

- Hydraulic analysis using gage relationships
- Normalization analysis using water
 balance equation on Lake Erie
- GIS analysis of historical bathymetry change
- Numerical modeling

Historic Dredging and Events

Regime Change	Date	Estimated Effect on Lake Huron Water Level (m)
6.1 m Navigation Channel Dredging	1855 to 1906	-0.11 to -0.21
Removal of Shoal from St. Clair Flats	1906	-0.01
Sinking of Steamers Fontana and Martin	1900	+0.03
Sand and Gravel Mining	1908 to1925	-0.09
Dredging 7.6 m Navigation Channel	1930 to 1937	-0.05
Dredging 8.2 m Navigation Channel	1960 to 1962	-0.13
NET EFFECT	1855 to 1962	-0.36 to -0.46

Erosion of St. Clair River Channel

- 1867 Bathymetry
- υ 1929 Bathymetry
- υ 1971 Bathymetry (1948 in Figures)
- v 2000 Bathymetry

1867 Bathymetry Upper St. Clair River

Comparison 1971-2000 Bathymetry

Net Erosion

Upper River Erosion and Accretion Patterns

Comparison 1971-2000 Bathymetry

Net Erosion

Key Points From GIS Analysis of Bathymetry Change

- The St. Clair River has eroded significantly between 1971 and 2000
- The erosion mostly explains the decline of Lake Michigan-Huron levels
- Continuous erosion results primarily in an upstream lake drop

Four Independent Analyses

- Hydraulic analysis using gage relationships
- Normalization analysis using water balance equation on Lake Erie
- GIS analysis on historical bathymetry change
- υ Numerical modeling

Numerical Modeling

- Two numerical models applied in the St.Clair River and parts of Lakes Huron andSt. Clair
 - ^v *RMA2 a 2D hydrodynamic model*
 - MISED a 3D hydrodynamic and sediment transport model

RMA2 Model

- Originally from USACE, Detroit District
- Model was developed and calibrated by USACE/USGS using 1999-2000 ADCP data
- Model domain adjusted and included
 - **The St. Clair River**
 - v Part of Lake Huron

Bain

^v Part of Lake St. Clair River

Lake Huron Level Drops with 2000 Bathymetry (using the same flow – mean flow)

Water Surface Elevation Profile

Compare to IJC Estimates (1985, 1987)

Year

MISED Modeling

- Baird in-house model a 3D hydrodynamic and sediment transport model
- Very detailed modeling application (2 to 4 meter grid resolution near the month of Black River)
- Model Domain
 - v Part of Lake Huron
 - Upper part of the St. Clair River

Run Condition Qstr=5400 cms Qbr=200 cms Elev = 176.276m

Calibrated with USACE ADCP Data (X-Section 06)

Flow Velocity Profile at Point B on Cross-Section 17 (13644681, 542455) Depth (m) 6.0 8 (Computed Measured 10.0 Measured × Measured 12.00 0.4 0.8 1.2 1.4 0.2 0.6 1 16 0 Flow Velocity (m/s)

Flow Direction Profile at Point B on Cross-Section 17 (13644681, 542455)

X-Section 17

Erosion Potential

- **Red** Fine Gravel
- Yellow Very Fine Gravel
- Green Medium
 Sand
- Blue Finer than Medium Sand

Baird

Baird

Riverbed Erosion

- ^v Erosion generally caused by:
 - More sediment moving out of an area than into that area
 - ^b Exposure of an irreversibly erodible sediment (removal of lag)
- The possible causes for recent erosion include:
 - aggregate mining
 - *coastal shore protection*
 - v riverbank protection, and
 - indirectly, dredging
 - Ship-enhanced erosion and transport

Outline

- Problem Definition
- Understanding of Water Balance in the Great Lakes
- Possible Causes of Head Decline
- » Four Independent Analyses
- Conclusions and Future Studies

Conclusions – What has happened...

- Water level data shows a previously undetected/unexplained 25 to 35 cm drop in head difference between M-H and E over the past 30 to 35 years
- High lake levels between 1970 and 1998 had previously masked the full extent of the head drop

Conclusions – What has caused it...

^v In the last 30 to 35 years, of the 25 to 35 cm drop:

- Glacial rebound accounts for less than 2 cm (Erie rise)
- NBS shift accounts for less than 4 cm (even this unlikely)
- Continuous erosion may have raised Lake Erie by 2 cm
- No significant contribution from change due to diversions
- Numerical model of 1971 and 2000 bathymetry (representing significant erosion) can account for 23 cm of change – all resulting from a fall of Lake Michigan-Huron due to increased flow capacity on the St. Clair River

Conclusions – What about the future...

- Both the hydraulic analysis and the normalization analysis suggest the decline in head difference (due mostly to a fall of Lake Michigan) is ongoing
- Lake level change due to erosion is irreversible
- Long-term cycles suggest falling lake levels over the next 80 years
- Latest climate change also predicts reduction in lake levels

Conclusions – What triggered and sustains the erosion...

- Lakes Michigan-Huron have been relatively stable for 2000 to 3000 years due to a stable outlet
- Recent changes that may have contributed to triggering and sustaining erosion:
 - Sand mining
 - Dredging (indirectly)
 - Coastal protection and structures
 - River bank protection
 - ^b Ship-enhanced erosion and transport

Future Studies

- Bathymetry survey of the upper river and lake (and review any 1980s, 1990s bathymetry)
- Boreholes of the eroding area, ROV, geophysical surveys
- ⁵⁰ 3D modeling of waves, currents, sand transport, cohesive sediment erosion and morphodynamics
- ^v Geomorphic assessment, detailed sediment budget
- Explanation of the erosion
- Development/testing of solutions

Outline

- υ Pdf's of erosion
- Physical model of St. Clair and Black River
- υ Detroit River

Acknowledgements

- Baird & Associates completed this work through funding by the GBA Foundation
- Cooperation and assistance of the USACE, Environment Canada and the Great Lakes Environmental Research Laboratory is gratefully acknowledged
- Many thanks to Frank Quinn for his valuable input and review of our work.

Detroit River, Fighting Island to Belle Isle - Analysis of River Bed Erosion

W.F. Baird & Associates Coastal Engineers

April 13, 2005

Bathymetry Grid Created from 1925 Survey Data (IGLD 85, metres)

0

2,500

5,000

Scale 1:72,000

10,000

Projection: UTM Zone 17N Datam: NAD 83

Baird

Scale 1:72,000

8.000

0 2,000 4,000

Detroit River Tunnel Scour

Baird

Profile G - Detroit River

....

Profile E - Detroit River

Profile C - Detroit River

Danu

Profile B - Detroit River

Dallu

Profile A - Detroit River

Dallu

Profile D - Detroit River

Profile F - Detroit River

Bed Changes Between 1925 and 2000

- Generally, the river bed is in an erosional state
- About 1 metre of downcutting on average for this section of the river bed in 75 years

River Scour Assessment

- Water level data collection and analysis
- Bed sediment erodibility
- 100 year scour depth assessment
 - *River scour under natural river flows*
 - Storm surge impact
 - Ship traffic, ice jam, and global warming impacts

Bed Sediment Erodibility for Hard Clay

- $E = aT^{1.5}$
- E erosion rate in mm/hr
- u a constant (=0.06)
- $_{v}$ $T = (\tau_{b} \tau_{cr})/\tau_{cr}$
- τ_b bed shear stress τ_{cr} - critical shear stress for erosion (=2.25 pa)

100 Years of Erosion Under Natural Flow

- Estimated flow velocity is in range of 0.6 to 0.8 m/s
- Consistent with the flow velocity measured in the river
- In total 0.4 m erosion is predicted for pure natural river flow (monthly data) over 100 years according to the erodibility equation

Storm Surge Impact

- Strong winds are most likely during fall and early spring
- The setup and setdown of lake levels increases flow velocity in the river
- Flow velocity depends on surge strength and duration
- Use daily data to estimate surge impact from 1970 to 2003

Storm Surge Impact

 Estimated flow velocity: -0.2 to 1.0 m/s
 In total about 1.4 m erosion is predicted for storm surge plus natural flow (daily data) over 100 years (using 30 years data)

Ship Traffic Impact

- Ship propeller erosion
 - ^v Function of ship size/draft, propeller type, and traffic
 - Largest vessel with full power can generate about 4 m/s flow velocity near bed (depth 13 m) at the project site
 - ^v However, vessel speed is limited to 10.2 knots (5 m/s)
- Ship traffic data required
- Additional local erosion (about 0.5 m) may be caused by ship traffic at some locations
- Ships have less impact in other areas
 - Baird

Global Warming

- The temperature in the Great Lakes region could rise 2 to 4 °C by the end of the 21st century
- Precipitation could increase by 25%
- υ More intense rainstorms
- Great Lakes levels are expected to fall by
 1.5 to 8 feet (0.5 m to 2.4 m);
Global Warming Impact on River Scour

The downcutting rate may be more than that predicted because of more storm surges caused by global warming
 Baird

Verification

Baird

	Measured and from	Predicted
	bathymetry	
	comparison	
Downcutting	1.25 m	1.36 m
	(max. 2.0 m)	
Flow velocity	0.6 – 0.75 m/s	0.6 – 0.8 m/s

Predictions for the next 100 years

- Assume the flow condition to be unchanged
 Natural flows the same as past
 Storm Surge the same as past
 Global warming lake level drop of 0.5 m
 Ship traffic not considered
- 1.32 m of additional downcutting by 2103

Preliminary Findings – Bathymetry Comparison

> River bed changes since 1925 year
> Most of the river was in downcutting state
> The average erosion in the reach from Fighting Island to Belle Isle Island is about 1 m

Preliminary Findings – Dynamic Analysis

- The analysis predicted the observed erosion in the past 100 years
- Bed changes estimated over past 100 years
 - About 0.4 m scour caused by natural flow
 - Additional 1 m scour contributed by storm surges

Preliminary Findings – Dynamic Analysis

- Surges are the main driving force for scour
- Ship traffic contributes to river scour, particularly at the project site
- More erosion will be expected due to global warming
- Ice jams likely do not have a significant influence on river scour