

Environment and Climate Change Canada

Cladophora in eastern Lake Erie: a synthesis of findings from the Great Lakes Nutrient Initiative

David Depew¹, Sean Backus², Alice Dove², Luis Leon¹, Reza Valipour¹, Ram Yerubandi¹, Veronique Hiriart-Baer¹

 ¹Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON.
 ²Water Quality Monitoring and Surveillance Division, Environment and Climate Change Canada, 867

Lakeshore Rd., Burlington, ON.

Feb 22nd 2017 8th Binational Lake Erie Millenium Network Meeting, Windsor ON.

Great Lakes Nutrient Initiative (GLNI)

- Support research in Lake Erie and surrounding tributaries (2012-2015)
- Improve estimation of P loads to Lake Erie from Canadian tributaries
- Research to support development of P load reduction targets under the GLWQA 2012
 - Cyanobacterial blooms
 - Central basin hypoxia
 - Eastern basin *Cladophora*

Environment and Climate Change Canada Page 2 – March 2, 2017

Eastern basin

Rathfon Pt, July 2013

Rock Pt, July 2006

Grant Pt, July 2014

Grant Pt, June 2014

Environment and Climate Change Canada Environnement et Changement climatique Canada

aicii 2, 2017

Fundamental challenge for targets

- 1) Basin level P supply as dictated by external P loadings and general trophic status
- 2) Local inputs of P (particularly SRP) to the nearshore
- 3) Efflux of P from the lake bed, mediated by dreissenid mussels as affected by 1) and 2)

Environment and Climate Change Canada Page 4 – March 2, 2017 Environnement et

Changement climatique Canada

On local vs lake – wide drivers

Page 5 – March 2, 2017

*

Environment and Climate Change Canada Environnement et

Changement climatique Canada

Valipour et al. 2016 Canada

Upwelling fluxes

Offshore SRP flux 70 – 140 MT (May – July) Grand River SRP load 50 – 90 MT (most in April)

- Hypolimnetic SRP
 reservoir
- Cause of inter-annual variation unknown

*

Environment and Climate Change Canada

Local vs lakewide – some nuances

2013 Base Scenario

- Scenario 1: No River Input
 Net Production ↑ 35 %
- Scenario 2: reduce offshore concentration to Net Production ↓ 13 % "0"
 Valipour et al. 2016

Page 7 – March 2, 2017

Domain (0 - 6m integrated)

Environment and Climate Change Canada

Some confirmation...

Environment and Climate Change Canada

Some confirmation...

Page 9 – March 2, 2017

2,716 data records (1967 - 2015)

Depew et al. (in prep)

Upper quantiles (max biomass) respond negatively to \uparrow precip

Environment and Climate Change Canada

Sources and cycling of P - nearshore

- ¹⁸O:¹⁶O isotopes to identify and track cycling of PO₄ (δ¹⁸O_P)
 Based on disequilibrium of δ¹⁸O_P and δ¹⁸O_W
 - **Biotic system** Abiotic system Δ This study **Chemical fertilizers** Gruau et al 2005 (000)n Fertilizer processing McI aughlin et al 2006a \bigcirc Avliffe et al 1992 Guano Colman 2002 Animal waste ന്ത Aerosols Δ Δ DOP recycling Detergents A/X3A Mixing w Mixing w 2nd Toothpaste 2nd source \square source Vegetation leachate Δ Soil leachate Δ $\delta^{18}O_w$ Eq lower higher WWTP water രത 5 10 20 25 15 Internal δ¹⁸0, Young et al. 2009 PPase cyclingPage 10 – March 2, 2017 Environment and Environnement et Climate Change Canada Changement climatique Canada

Sources and cycling of P - nearshore

Environnement et

Changement climatique Canada

Environment and

Climate Change Canada

Sources and cycling of P - nearshore

- DOP recycling dominant
- % DOP ↑ as DOC pool becomes more autochthonous

Depew et al. in review

Page 12 – March 2, 2017

Environment and Climate Change Canada

Some emerging thoughts...

Environment and Climate Change Canada

Are loads adequately reflected for modeling purposes?

Are loads adequately reflected for modeling purposes?

 δ¹⁸O_P largely invariant during spring runoff period – unexpected from multiple sources

Page 15 - March 2, 2017

• $\delta^{18}O_P$ consistent with equilibrated soil P and decomposed OM

Depew et al. in review

Are loads adequately reflected for modeling purposes?

Environment and Climate Change Canada

Are loads adequately reflected for modeling purposes? Mouth of Grand River

 δ¹⁸O_P ↑ disequilibration during summer – only expected if DOP recycling is important

Page 17 – March 2, 2017

Environment and Climate Change Canada

So what is actually entering the nearshore?

- 50 80 % of Org P exported during summer is phytoplankton
- δ¹³C of dreissenids and POC suggests partial reliance on plankton exported from river.

Environment and Climate Change Canada

Summary

- Management of *Cladophora* blooms will require attention to lake – wide and local inputs, not just of SRP but also P in phytoplankton
- Models will require validation of key processes in order to fully separate impacts of competing (and variable) mechanisms of P supply
- Better understanding of the impact of watershed management on forms of P exported from rivers and the light climate in receiving waters is needed

Page 19 – March 2, 2017

Environment and Climate Change Canada

Guidance on ecosystem objective is critical

Lake Huron 2013 45 m depth

Photo: H. Biberhofer, ECCC

Environment and Environmement et

Lake Erie 2013 5 m depth Canada

Environment and Climate Change Canada

Thanks !

What should the objective be?

Page 23 – March 2, 2017

Canada

Environment and Climate Change Canada