Combining monitoring, advanced molecular techniques and near real-time instrumentation to investigate the response of cyanoHABs in Lake Erie and Lake St. Clair to different environmental conditions

Timothy Davis

Co-authors & Funding Great La Restor

- Greg Dick, Rose Cory, Michelle Berry, Vincent Denef, Melissa Duhaime, Derek Smith and Kevin Meyer – University of Michigan
- **Duane Gossiaux, Steve Ruberg** NOAA-GLERL
- Greg Doucette, Tina Mikulski, Richard Stumpf, Timothy Wynne NOAA-NOS
- Tom Johengen, Alicia Ritzenthaler, Ashley Burtner & Danna Palladino CILER
- George Bullerjahn and Robert Michael McKay, Mark Rozmarynowycz Bowling Green State University
- Justin Chaffin OSU Stone Lab
- Susan Watson Environment and Climate Change Canada
- Jan Ciborowski University of Windsor
- Funding: EPA-Great Lakes Restoration Initiative, Great Lakes Nutrient Initiative, NOAA, University of Michigan Water Center

Lake St. Clair bloom during late August, 2013

Spatial sampling of Lake St. Clair, 23 August, 2013

Samples collected (17 sites)

- Sterivex filter (DNA)
- Cell enumeration (Lugols)
- Dissolved and total nutrients

Dearborn

FI (Fighting Island)

• Total microcystins (ELISA)

Genetic analysis

- Targeted the *mcyA* region of the MC gene operon
- All samples yielded PCR products for mcyA
- Samples were sequenced at GENEWIZ, NJ

Microcystis spp. dominated the cyanobacterial community

Site

MC producers were homologous throughout LSC and similar to strains in Lake Erie and Lake Ontario

- Maximum-likelihood tree was generated using the Jones-Taylor-Thornton (JTT) algorithm
- Bootstrap values were obtained for 1,000 replicates
 - Bay of Quinte, Lake Ontario Hamilton Harbour, Lake Ontario Lake St. Clair
 - Northshore Lake Erie

- Planktothrix spp.

Davis et al., 2014; PLOS ONE

Using molecular tools to monitor CHABs:

<u>% toxic Microcystis</u> = proportion of Microcystis cells containing the genetics to produce microcystins (mcyD or E / 16S x 100)

Determined by (1) qPCR and (2) metagenomics

Shift in toxicity not due to changes in

<u>Community shifts correlate with (1) seasonal</u> <u>parameters (e.g., temp) (2) the bloom (pH)</u>

Berry, Davis et al., in press, Environmental Microbiology

<u>Microcystis has ~1900 core genes</u> and a diverse flexible genome

- Within an individual strain 40-50% are core genes
 - Prochlorococcus 40-67% (Kettler et al., 2007 PLoS Genetics)
 - Anabaena 40% (Simm et al., 2015 Frontiers in Microbiology)
- Of all genes identified
 - 11%-14% of identified genes are highly represented (core genome)
 - 62% of genes are rare (only found in 1-2 strains)

Meyer, Davis et al., subm., PLoS ONE

<u>Many of the strain specific genes found in new</u> <u>Microcystis</u> isolates involve genome flexibility

	Microcystis aeruginosa LE3	Microcystis cf aeruginosa/ botrys LSC13-02	<i>Microcystis wesenbergii</i> LE013-01
Unique genes	195	475	232
Transposases	5	13	5
Transferases	12	16	21
Endonucleases	6	20	1
CRISPR-Cas	5	1	0

- Most Great Lakes strain specific genes are currently hypothetical
 - LE3: 42%
 - LSC13-02: 43%
 - LE013-01: 43%

Meyer, Davis et al., subm., PLoS ONE

Toxic strains decline with lower nitrate concentrations

Microcystin synthesis genes up-regulated within 4 hours of exposure to increased N

Bars = Mean \pm SE; A and B = significantly up-regulated (p < 0.05)

Chaffin, Davis, et al, in prep.

Nitrogen constrains growth and toxicity of Planktothrix in Sandusky Bay

 $NH_4 + PO_4$ - $NO_3 + PO_4$ -+Urea only- $+NH_4 only$ - $+NH_3 only$ -+PO₄ only- $Urea + PO_4$ Control 10 16 After 48 hours of incubation

Davis et al., 2015 ES&T

Niche differentiation among cyanobacterial populations

Microcystis is an excellent P scavenger

Microcystins may protect cyanobacteria from oxidative damage....

The Cyanobacterial Hepatotoxin Microcystin Binds to Proteins and Increases the Fitness of *Microcystis* under Oxidative Stress Conditions

Yvonne Zilliges¹, Jan-Christoph Kehr², Sven Meissner², Keishi Ishida³, Stefan Mikkat⁴, Martin Hagemann⁵, Aaron Kaplan⁶, Thomas Börner⁷, Elke Dittmann²*

<u>Colony-associated catalase gene expression shows similar</u> trends to microcystins concentrations

Microcystis and many other cyanos lack catalase genes

n = number of genomes queried

48 hours @

ambient light and temperature

 $+H_2O_2$ treatments = 1081 ± 439 nM Control treatments = 364 ± 158 nM

(Average ± SD of 18 measurements)

Isolation of bloom-associated heterotrophic bacteria from Lake Erie

compare to LE 16S

Isolate	Class	Family	Genus	Boot-	Seq-	OTU ^c	OTU	Cata-
Code				strap	match		%ID	lase
LE-L5	Bacilli	Bacillaceae		100			96.1	
PE-	vor half c	fallicol	atos nro	C II		ata	lac	Δ ς
PE-5			accs pro	u u	0.988	ala	194.5	CS
	Alphaproteobacteria							

<u>Cultured bacteria are abundant during Lake Erie</u> <u>cyanoHABs, rapidly decompose H₂O₂</u>

<u>Heterotrophic bacteria protect</u> <u>Microcystis</u> from external H₂O₂

Dependence of the Cyanobacterium *Prochlorococcus* on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean's Surface

J. Jeffrey Morris¹, Zackary I. Johnson², Martin J. Szul¹, Martin Keller³, Erik R. Zinser¹*

. PLoS ONE | www.plosone.org

1

February 2011 | Volume 6 | Issue 2 | e16805

Future directions

- How do the results from Lake Erie compare to Saginaw Bay and Green Bay?
- Investigate the ecological adaptations of Great Lakes CHAB species
 - Further understanding the interactive roles of light, nutrients, and temperature on toxin production and community composition
- Develop an ESP network for western Lake Erie
- Further develop the ESP capabilities
- Develop toxin prediction models
- Investigate changes in microcystin congeners over time
- Develop a genomic database for Great Lakes cyanobacteria

