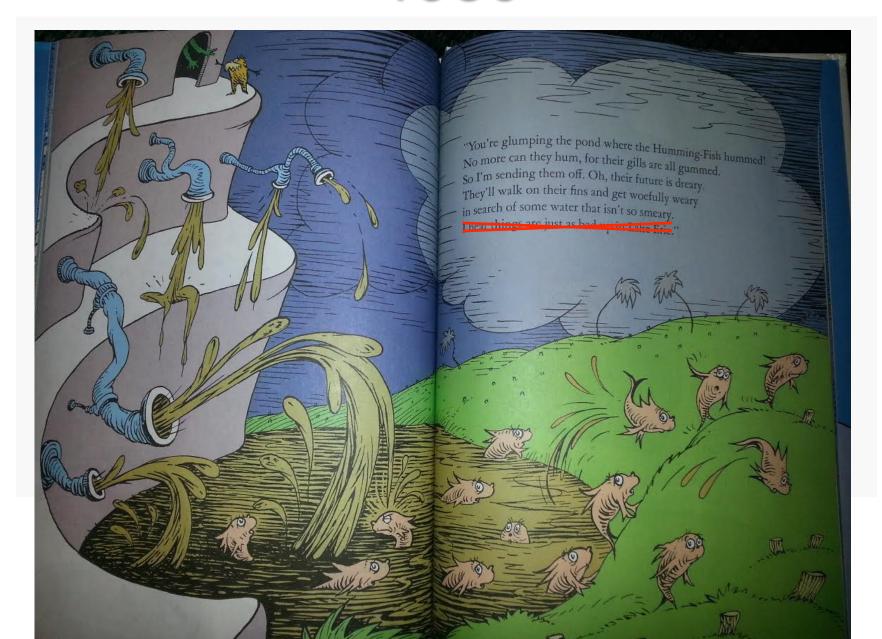


1978 GLWQA

btw #experiment we don't know exactly what will happen...


By Joint Proclamation
Henceforth and forever after

The Lake Erie phosphorus load shall not exceed:

11,000 tonnes/year

which probably translates to about 15 ug/L

Lake Erie at the Millennium Conference 1999

"In the late 1990s there has been pressure by some fishing interests to increase nutrients loads in order to increase fish yields..."

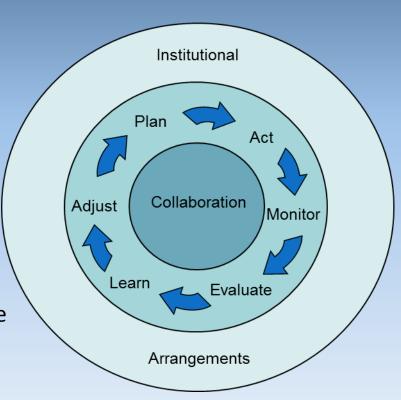
basin (67% and 21%, respectively). ... Nevertheless, major blooms of toxic strains of Microcystis occurred in the western basin in 1995 and 1998, suggesting that phosphorus availability may be increasing."

Culver et al.

2012 – New GLWQA

Annex 4 - Nutrients
Six Lake Ecosystem Objectives
Update Substance Objectives (target concentrations)
Update Phosphorus Load Targets
Do this for Lake Erie within 3 years (February 2016)

PHOSPHORUS
LOADING TARGETS


Annex 4 Subcommittee has been meeting regularly since late 2013 Recommended Phosphorus Loading Targets Report May 2015

Recommended Phosphorus Load Targets

Summary of Phosphorus Load Targets		
Western Basin Cyanobacteria – Bloom biomass less than or equal to 2004 or 2012 9 years out of ten, and/or reduce risk of nearshore localized blooms		
Maumee River		
	Spring (Mar-July)	Annual
Total Phosphorus load	860MT#	
btw #experiment		
we don't know exactly what will happen		
Other Western Basin Tributaries and Thames River		
Total Phosphorus load	40% reduction *	
Dissolved Reactive Phosphorus load	40% reduction*	
Central Basin Hypoxia – Aug –September Average Hypo- limnetic oxygen of 2mg/L or more		
Total Phosphorus load to WB & CB, including Detroit River and atmospheric load)		6000MT **
Cladophora – insufficient information to establish target		

Adaptive Management - An Imperative

- Well established concept extensive literature*
- Decision-making under uncertainty
- Reduce uncertainty via ecosystem-scale experiment - not usually feasible
- Recognize management actions as experiment
- Learn Testable hypotheses supported by appropriate research and monitoring
- Update management actions with new knowledge

Active learning process – not trial and error

Active vs Passive Adaptive Management

Less learning

Passive

Choose "best" management

Monitor

Evaluate

More learning

Active

Deliberate, structured experimentation
Choose management to push system
Develop testable hypotheses,
alternative models
Structure monitoring, research to test
hypotheses, differentiate models

Best to be closer to the active side

POLICYFORUM

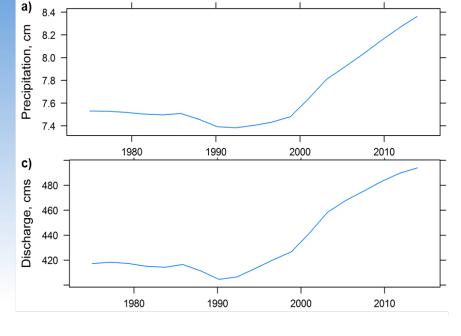
CLIMATE CHANGE

Stationarity Is Dead: Whither Water Management?

P. C. D. Milly, 1* Julio Betancourt, 2 Malin Falkenmark, 3 Robert M. Hirsch, 4 Zbigniew W. Kundzewicz, 5 Dennis P. Lettenmaier, 5 Ronald J. Stouffer 7

Climate change undermines a basic assumption that historically has facilitated management of water supplies, demands, and risks.

Science 2008



Article

pubs.acs.org/est

Long-Term and Seasonal Trend Decomposition of Maumee River Nutrient Inputs to Western Lake Erie

Craig A. Stow,**[†] YoonKyung Cha,[‡] Laura T. Johnson,[§] Remegio Confesor,[§] and R. Peter Richards[§]

Long-term precipitation increasing

Long-term Maumee River discharge increasing

Implementing Adaptive Management

To effectively implement, requires

- Defined problem
- Authorization to address problem GLWQA
- Institutional framework to support collaboration LAMP
- Defined objectives
- Work plan and reporting cycle
- Performance measures
- Stakeholder involvement

Under Development

Draft Report - (24 November 2015)
RECOMMENDATIONS FOR MONITORING,
MODELING, RESEARCH AND REPORTING TO
SUPPORT ADAPTIVE MANAGEMENT

- Resources
- Political will

In Conclusion

 Going forward, our willingness and ability to monitor, evaluate, and update the targets will be more important than the original targets

Thank You!