

Paris D. Collingsworth¹, R.T. Kraus², J.C. May³ and G.J. Warren³

¹Department of Forestry and Natural Resources, Purdue University and Illinois – Indiana Sea Grant email: pcolling@purdue.edu

² USGS – Great Lakes Science Center, Sandusky Field Station

³ EPA – Great Lakes National Program Office

Re-eutrophication of Lake Erie

Background: D.O. monitoring

- GLNPO began monitoring program in 1983 in response to the QLWGA (1978)
 - Restoration of year round aerobic conditions in the central basin
 - Depletion rate in bottom waters

- GLNPO dissolved oxygen monitoring
 - 10 Stations in the central basin
 - Visited 6 times per year
 - SeaBird profiles
 - Calculate annual corrected oxygen depletion rate
- Contact info: may.jeffery@epa.gov

Background: D.O. monitoring

- GLNPO began monitoring program in 1983 in response to the QLWGA (1978)
 - Restoration of year round aerobic conditions in the central basin
 - Depletion rate in bottom waters
- New requirements under the 2012 Great Lakes
 Water Quality Agreement
 - Minimize the extent of hypoxic zones with particular emphasis on Lake Erie
 - Need baseline estimate of spatial extent of hypoxia

2014 Cooperative Science and Monitoring Initiative (CSMI)

- Expand GLNPO DO monitoring program
 - Sample later in the season
 - Measure DO near shore
- Explore new methods
 - Augment GLNPO Seabird measurements using sensors and data loggers
 - Near shore and off shore stations

- GLNPO extended D.O. monitoring
 - Sampled 25 stations during peak hypoxia
- Contact info: may.jeffery@epa.gov

CSMI new methods

- Sensor-based
 - Onset U26 data logger
 - InterOcean acoustic release
- Increased temporal resolution
 - Measurement every 10 minutes

CSMI logger network

- Increased spatial resolution
 - 25 station
 - Cover about 7800 km²
 - Depth ranges 14 to 22 m
- Required collaborative approach
 - EPA GLNPO, USGS, OHDNR

Statistical analyses

- Done in collaboration with U of IL National Center for Supercomputing Applications
- Automate data analytics
 - Data ingestion, syncing and basic QA/QC
 - Interpolations
 - Calculate error term
- Spatial extent of hypoxia
 - Daily averages
 - Hypoxic area at DO less than 4 and 2 mg · L⁻¹

Daily averages – 2014

Spatial extent of hypoxia – 2014

Spatial extent of hypoxia – 2014

Hypoxia monitoring – future work

- Logger network data runs from 2014 2016
- Analyses 2014 2016 data
 - Bayesian spatio-temporal kriging
 - Identify external forcing factors
- Continue working with partners

Hypoxia – impacts on species distribution

- Hypoxia influences on benthic organisms
 - Collaborators EPA GLNPO, USGS, SUNY Buffalo State, UM CILER
- Compared hypoxic extent with *Dreissena* distribution
- Important interactions between hypoxic zone and mussels

Hypoxia – impacts on fisheries

- Vulnerability to fishing gear (Kraus et al. 2015)
- Examine dynamic hypoxic zone effects on commercial fish catches

Hypoxia – impacts on ecosystem services

- Hypoxia degrades water quality near municipal intakes
 - Collaborators USGS, NOAA –
 GLERL, UM CILER
- Develop model to predict spatial dynamics of hypoxic zone
- See Mark Rowe's poster

