

#### Data buoys provide real-time data

- Fixed monitoring stations
- Records biological, physical, chemical, and meteorological variables
- Continuous, real-time data
- Data can be utilized by lake managers, researchers, water treatment plant operators, tourists and the general public



**Gibraltar Buoy** 









### Data buoys measure water quality 0.7 meter from the surface.



#### Potential issues with the sensors?

- Infrequent calibration
  - Sensor drift throughout deployment?
- Algae biomass is not measured
  - Sensors measure fluorescence, which can change with physiological status of the cell
- Clogging from *Dreissena* mussels
  - Low water exchange













### Sandusky intake buoy after 5 month deployment





### Water samples collected next to the buoy

- Deployed May October in 2015 and 2016
- Water samples next to the buoy throughout summer using
  0-2 meter integrated tube sampler (several samples /week)
  - Microcystin (total and extracellular)
  - Chlorophyll and phycocyanin
  - Phytoplankton biovolume data
  - FluoroProbe (chlorophyll a associated with green algae, diatoms, and cyanobacteria)
  - Nitrate, ammonium, TKN, TP, DRP, Si
  - TSS & NVSS
  - Secchi disk depth
  - 147 samples
  - Vertical profiles of algae on 34 dates









### 2015 large bloom at Stone Lab buoy

BUOY

Water Sample





July 24, 2015

#### 2016 bloom just above detection limit



#### The 2016 bloom never reached the islands.



### Good relationship between buoy BGA-PC RFU and water sample cyanobacteria



# Total Chlorophyll: Different trends between the two years and low correlation







### Buoy NTU sensor good indicator of water clarity.















## Microcystin concentration tracked with buoy data



### Sandusky Intake BGSU buoy not as good correlation









### Can buoy sensor data be used to predict water quality?

- Cyanobacteria: Yes.  $R^2 = 0.96$ 
  - Sandusky Buoy not as good
- •Total chlorophyll: No. R<sup>2</sup> <0.50; different relationship between the years
- •Water clarity: Yes.  $R^2 = 0.86$  for TSS Yes.  $R^2 = 0.81$  for Secchi Disk
- •Microcystin concentration tracked the buoy cyanobacteria fluorescence data.







#### Plans for 2017

- Continued sample collection by our buoy
- Analyze vertical profiles of phytoplankton
  - How do surface buoy measurements compare to bottom water (i.e. where an intake could be)?
  - Factor in wind data







### Acknowledgements

- Funding provided by Ohio Water Resources Center and Friends of Stone Lab
- Stone Lab REU students and staff

Olá from Brazil









