Microcystins and the Toxicity of Hazardous Algal Blooms.

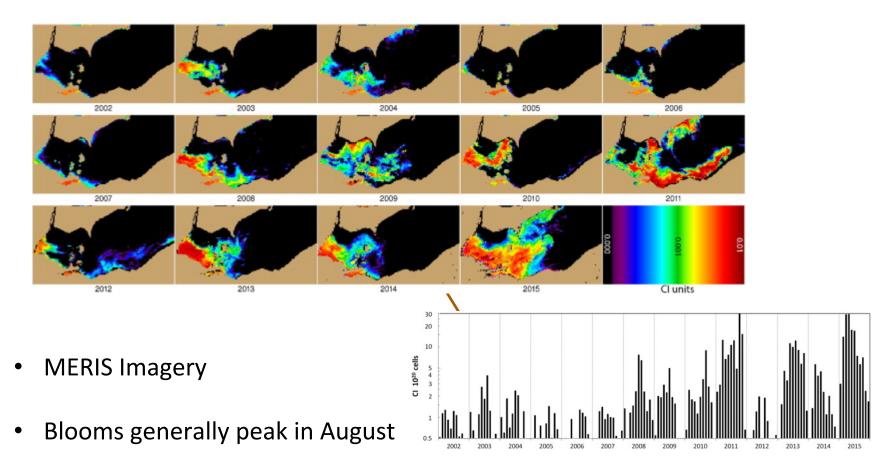
Gregory L Boyer Wayne Carmichael Steven Wilhelm Susan Watson

And a whole host of other people!

Dept of Chemistry, SUNY-College of Environmental Science and Forestry, Syracuse NY Department of Biological Sciences, Wright State University, Dayton, OH Department of Microbiology, University of Tennessee, Knoxville, TN Department of Biology, University of Waterloo, Burlington, ON

In this talk.....

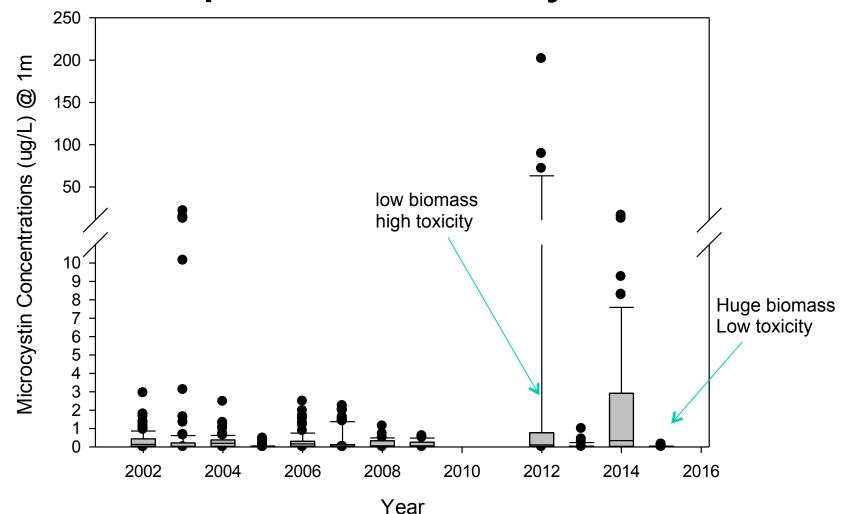
What I will talk about:


- Occurrence of the toxins
- Exposure pathways
- Reports of Human health impacts
- Unreported considerations

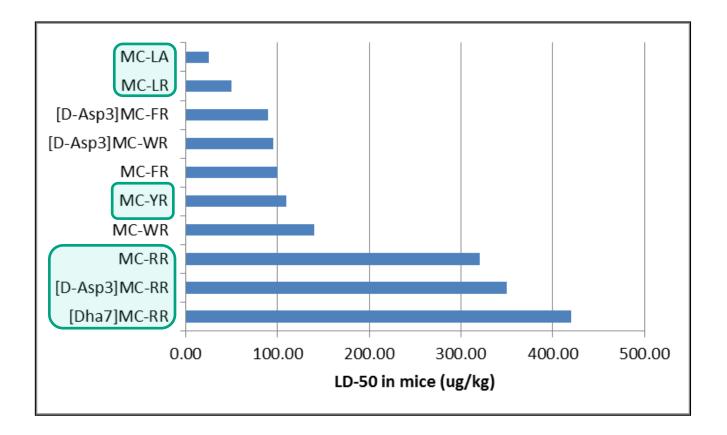
What I will NOT talk about:

- Current Guidance values for drinking water
- Current Guidance values
 for recreational contact
- Broader ecosystem effects
- Detailed monitoring results

Human Health impacts = Dose x duration x toxicity


These blooms occur every year:

• Algorithm to convert the CI to biomass estimates.


Stumpf et al. (2016). Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie JGLR 42:1174-1183.

Biomass does not necessarily predict toxicity

Data from ESF-ECCC cruises, Carmichael and Boyer 2016

Toxin concentration does not necessarily predict toxicity

Most of our focus has been on exposure via drinking water

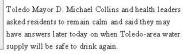
State of emergency dedared in Lucas County after toxins found in Toledo water - Toledo Blade#o18SAaAKupv3UuW0.03

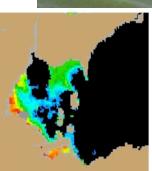
emberLog	in Become	a Member Today	/s Front Page		Saturda	y, August 0	2, 2014
CUI	RRENT						
WE.	ATHER		TTT	7	DI		DE
					БІ	A	
truthhil.	^{67°}		Onee	f Amorica	's Great	Newspapers	
Rain	-		One of	JAMEIIC	i a Great	(ewspupers	
Complete	e Forecas						
	NEWS	SPOR	TS A&E	BUS	INESS	OPINION	OUR TOWNS

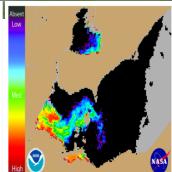
HOME \rightarrow NEWS \rightarrow LOCAL Published: Saturday, 8/2/2014 - Updated: 2 seconds ago 🖉 Print Story

State of emergency declared in Lucas County after toxins found in Toledo water

Microcystin found in samples; boiling not recommended


BLADE STAFF


Ante 4.1K Tweet 624 8+1 76 CReddit 6 II Pint 9 Email 84 P



Scenes like this were common this morning as area residents traveled all over in search of bottled water. THE ELADE/JETTA FRASER Enlarge | Buy This Photo A state of emergency was declared today in Lucas County and the greater Toledo area after tests at the Collins Park water-treatment plant in East Toledo produced two toxin sample readings.

Chemists testing water at Collins Park plant found two sample readings for microcystin that exceeded the recommended "do not drink" standard of one microgram per liter standard.

How do you determine safe levels of toxin in water?

- Start with a mouse
- Measure the highest level that has no effect.
 - No Observed Adverse Effect Level (NOAEL)
 - 40 μ g/kg body weight for microcystins
- Include safety factors
 - 10x (mice are not people)
 - 10x (not every mouse is the same)
 - 10x (limited number of studies)
- Average body weight of adult (60 kg)
- <u>Consume 2 L water per day for life</u>

World Health Organization Guideline value: = 1 ug / L (ppb) (guideline value – not regulatory)

What do we really know about the Toledo DWE?

- Source water concentrations in Lake Erie exceeded ~5-15 ug/L
- Finished water concentrations exceeded the WHO drinking water guidelines (2.5 ug/L) for approximately 2-3 days.
- Collins water treatment plant solved the "problem" by increasing carbon levels.
- ~ 200 reported cases of "microcystin" intoxication from residents of the Toledo area.

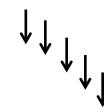
Reported Symptoms

- Nausea
- Fever
- Chill and sweats
- Diarrhea
- Vomiting
- Difficulty breathing
- Weight loss

- Nausea
- Ear, eye and skin irritation
- Diarrhea
- Vomiting
- Sore throat
- Hay fever or asthma -like symptoms

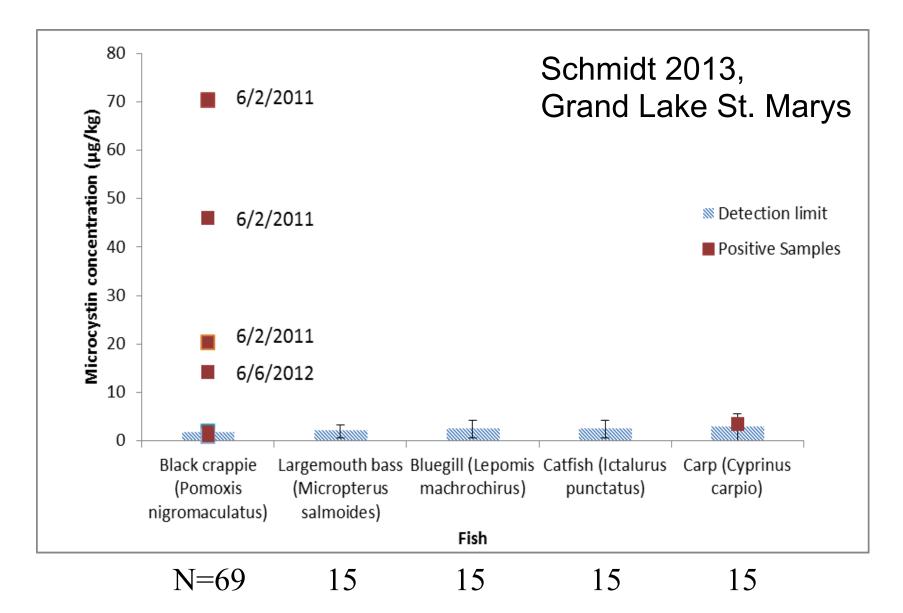
Reported Symptoms

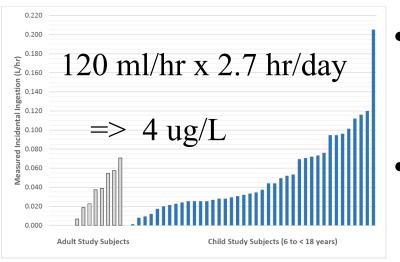
- Nausea
- Fever
- Chill and sweats
- Diarrhea
 Vomiting
- Difficulty breathing
 Weight loss


- Nausea
- Ear, eye and skin irritation
- Diarrhea
 Vomiting
 - Sore throat
 - Nay fever or asthma -like symptoms

Safe levels of toxin in Fish?

- Start with a same 40 µg/kg body weight for microcystins (NOAEL)
- Include same safety factors
 - 10x (mice are not people)
 - 10x (not every mouse is the same)
 - 10x (limited number of studies)
- Average body weight of adult
- 100 g fish/meal/day (Ibelings & Chorus 2007)
 - Daily: 3 ug/kg fish (adults)
 - Seasonal: 30 ug/kg (adults)
 - kids are 5-8 fold less


Assumes bloom is toxic all season.


Fish results are highly variable – mostly zero

Why are the fish so variable?

- Artifact of sampling (# fish too small)
- Analytical method (ELISA >> LC-MS/MS)
- True differences between fish species
- Fish diets are different (foodweb effect)
- Fish finding refuge from blooms
 - Differential exposure
- Fish metabolizing the toxins
 - Could this explain ELISA results with natural samples?

Recreational Contact?

- Exposure through swimming
 Ingest water
 - 1997 EPA exposure factors handbook
- Exposure through aerosol
 - Time of exposure limited to time of recreation
- Exposure through the skin (contact exposure)
 - Very polar molecules
 - Contact exposure minimal

Google: draft recreation microcystin

Are there reported Human exposures for Lake Erie?

Year	Location	Toxic Bloom?	Suspect cases*	Probable cases
2010**	Lake Erie	Yes	7	2
2011	Lake Erie (not OH)	Yes	1	
2012	Headlands Beach (CLE)	-	1	
2015	Kelley's Island (islands)	-	1 (?)	
2015	Reno Beach (WLE)	-	3 (?)	
2015	Lakeside (islands)	-	1 (?)	
2015	East Harbor (islands)	-	1 (?)	

* Suspect cases need bloom, symptoms in time, and no other cause. **Of 44 probable cases reported 2010-2015 – 41 occurred in 2010.

Carmichael and Boyer, 2016 Data Courtesy of Ohio DOH

How about other toxins?

- Cylindrospermopsin => health effects known but not reported in Lake Erie.
- Anatoxin-a => Common in Lake Erie but health effects difficult to evaluate.
- **PSP toxins** => Occurrence uncertain. Health effects also uncertain.
- **BMAA** => Particulate levels low exposure pathway very uncertain.

Undiscussed Issues

- Lot of antidotal evidence for microcystin toxicity.
- Human reports of microcystin intoxication are suspect due to ease which they are confused with flu/ food poisoning/ alcohol consumption / sea sickness.
- Exposure data must consider length of exposure (drinking, fishing or recreation).
- Human health effects due to microcystins remains an imperfect science.

So what are levels in fish?

Fish species	Range of microcystin detected (µg/kg)	FW or DW	Extraction protocol	Analytical method
Channel catfish (Ictalurus punctatus)	h 123-250 FW Water:MeOH:butanol (15:4:1), C18 cleanup		ELISA	
Tilapia rendalli	3-337	DW	100% MeOH	ELISA
Yellow perch (Perca flavescens)	0.12-4.0	FW	75% MeOH/H+	ELISA
	0.5-7.0	DW	100% MeOH	ELISA
Largemouth bass (Micropterus salmoides)	210-320	FW	Water:MeOH:butanol (15:4:1), C18 cleanup	ELISA
Common carp (Cyprinus carpio	3.3-19	FW	50% MeOH, hexane	ELISA
	3-139	FW	75% MeOH, acetic acid	ELISA,LC-MS
	50-470	FW	100% MeOH	ELISA
	3.5	FW	5% acetic acid, 0.01M EDTA, charcoal	LC-MS/MS
Black crappie (Pomoxis nigromaculatus)	1.5-1.9	DW	50% MeOH	ELISA
	1.0-70	FW	5% acetic acid, 0.01M EDTA, charcoal cleanup	LC-MS/MS
White crappie (Pomoxis annularis)	270-320	FW	Water:MeOH:butanol (15:4:1) extraction, C18 cleanup	ELISA

Table from Schmidt et al, Toxins, 2013