## Nutrient Loading and Lake Erie: Recent Learnings

#### R. Peter Richards National Center for Water Quality Research Heidelberg University Tiffin, Ohio

Windsor, Ontario

Millennium Network Conference

October 29, 2013

# Topics

- Phosphorus loading, long-term and 2011-2013
- Predicting HAB intensity

### Tributary P trends 1975-2013



#### Maumee River monthly averages

### Tributary N trends 1975-2013



#### Maumee River monthly averages

#### Lake Erie Total Phosphorus Loading, 1967-2008



# Shift in lake response?



987 1989 1991 1993 1995 1997 1999 2001 2003 200

0.00?

19742 19792 19842 19892 19942 19992 20042 20092 20142

1992

### Importance of DRP



#### **Dissolved** P

- 90% DRP
- DRP is 100% bioavailable for algal growth

#### Maumee River, Bioavailable Phosphorus Loading



#### Particulate P

- ~30% bioavailable
- Tends to settle to bottom

## **Bioavailability of P**



# Source Ideas

- ~60% of LE TP load enters WB
- Maumee and Detroit River about equal
- Other sources minor
- Algal blooms often appear to grow in Maumee River plume
- Need new target loads that acknowledge bioavailability, basinspecific nature of problems

## Seasonal Loading Concept

- P loading drives algal growth
- HABs occur in late summer
- Perhaps P loads in some seasons are more important than loads in others.

## Microcystis in Lake E ie

The *Microcystis-Anabaena* bloom of 2009 was largest in recent years in our sampling regi ...until 2011



# NOAA work

- Relate "cyange discharge and
- CI best pred discharge
- March-June predictive
- Initial work ( predict 2012)



## Spring Discharge (March-June)



2011 and 2012 are the extremes - 2012 is 20% of 2011!

NOAA Ecofore/Maumee Loads.xls

## Spring TP Load



2011 and 2012 are extreme - 2012 is 17% of 2011!

## Spring DRP Load



2011 and 2012 are extreme - 2012 is 15% of 2011!

### March-June Maumee Discharge



#### 2012 Forecast (mild bloom) and Observed Bloom





# Learnings

- Lake responds quickly to changed loads
- Internal loading not important
- Detroit River loading not important
  - (maybe along west shore?)
- This is all about HABs; hypoxia is different in all regards

# What about 2013?

- Spring totals at end of June
- Predictions given July 2 at a webinar at Stone Lab

### March-June Maumee Discharge



## March-June Maumee Total P



## March-June Maumee DRP



# 2013 Forecast: Significant bloom, similar to 2003, much milder than 2011



### 2013 prediction for western Lake Erie similar in intensity to 2003, <1/5 of 2011

#### 2011 for comparison

#### 2013 may resemble 2003



2011

2003

| low | medium        | high |
|-----|---------------|------|
|     | concentration |      |

### October 2, 2013 – looking pretty bad



### October 2, 2013 – looking pretty bad

- One day's image does not constitute an annual Cyanobacteria Index value
- But possible revision to models
- July loads: seems it never stopped raining
- Hypothesis: maybe July loads count, but they don't get into the model because there's not been any important July loading during the period the model is based on.

### July Loads

|              | Discharge | ТР   | DRP |
|--------------|-----------|------|-----|
| March-June   | 2.77      | 1099 | 238 |
| July         | 0.57      | 149  | 50  |
| July/Mar-Jun | 21%       | 14%  | 21% |



2013 July loads compared to 2002-2012

### March-July Loads

|            | Year | Discharge | TP   | DRP |
|------------|------|-----------|------|-----|
| March-June | 2003 | 3.15      | 1360 | 307 |
|            | 2013 | 2.77      | 1099 | 238 |
| July       | 2003 | 0.97      | 373  | 111 |
|            | 2013 | 0.57      | 149  | 50  |
| March-July | 2003 | 4.11      | 1733 | 417 |
|            | 2013 | 3.34      | 1248 | 288 |

- 2003 loads substantially larger
- Yet 2003 was a small bloom year
- Reject hypothesis!
- Wait for CI to be determined...

# Summary

- Inter-annual variability in loading leads to highly variable HABs
- Tributary loading is the main driver
- Seasonality of loading appears important
- Must account for bioavailability of sources
- Need new P targets specific to Western Basin

# **Useful References**

- Ohio Lake Erie Phosphorus Task Force
  - http://www.epa.ohio.gov/dsw/lakeerie/index.aspx
- Paper on climate change, Lake Erie, and water sustainability
  - Anna Michalak and many others including me, Proceedings of the National Academy of Sciences
  - http://www.pnas.org/content/110/16/6448