

Returning to a Healthy Lake:

An International Biodiversity Conservation Strategy for Lake Erie

The Nature Conservancy:

Doug Pearsall
Paloma Carton de Grammont*
Cybil Cavalieri *
Patrick Doran
Laurie Elbing
Dave Ewert
Kim Hall
Matt Herbert
Mary Khoury
Sagar Mysorekar*
Anthony Sasson (OH)

*Formerly with TNC or NCC

Lake Erie Millennium Network Meeting October 30, 2013 Michigan Natural Features Inventory:

John Paskus

Nature Conservancy Canada:
Dan Kraus
Cindy Chu*

LEBCS: Partners and Funding

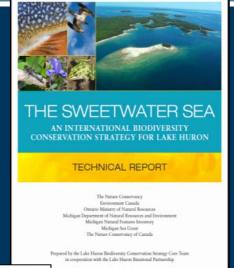
"...working with a broad network...developing strategies for the restoration and conservation of the native biodiversity and ecosystem function..."

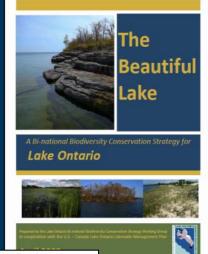
"primary output... biodiversity conservation strategies that will complement and be incorporated into the Lakewide Action and Management Plans (LAMPS)

With funding from:

Biodiversity Conservation Strategies for the Great Lakes (2009-2013)

A Biodiversity Conservation Assessment for


Lake Superior


Volume 1: Lakewide Assessment

Respect to the Superior Work Drops of the Lake Superior Salescetts distincted Management Flow

the Dept. Loss (B)

June 2010

MICHIGAMI: GREAT WATER

trategies to Conserve the Biodiversity of Lake Michigan

80 Technical Report 80

The Nature Conservancy

Michigan Natural Features Inventory

U.S. EPA Great Lakes National Program Office

Prepared by the Lake Hickigan Biodinersity Conservation Strategy Core Team

Returning to a Healthy Lake

An International ficelinerally Conservation Strategy for Lake Eric

30 Technical Report 30

The Statute Decembers

Return Conservancy of Consola

Michigan Returns Features Seventery

113.65% Great Labor National Program (ifflor Propagation for the Labor Eric Routinestry Concernation Strategy Core Trans

Conservation Action Planning (CAP)

Defining Your Project

- Project people
- Project scope & focal targets

Using Results to Adapt & Improve

- Analyze actions & data
- Learn from results
- Adapt project
- Share findings

Conservation

Action

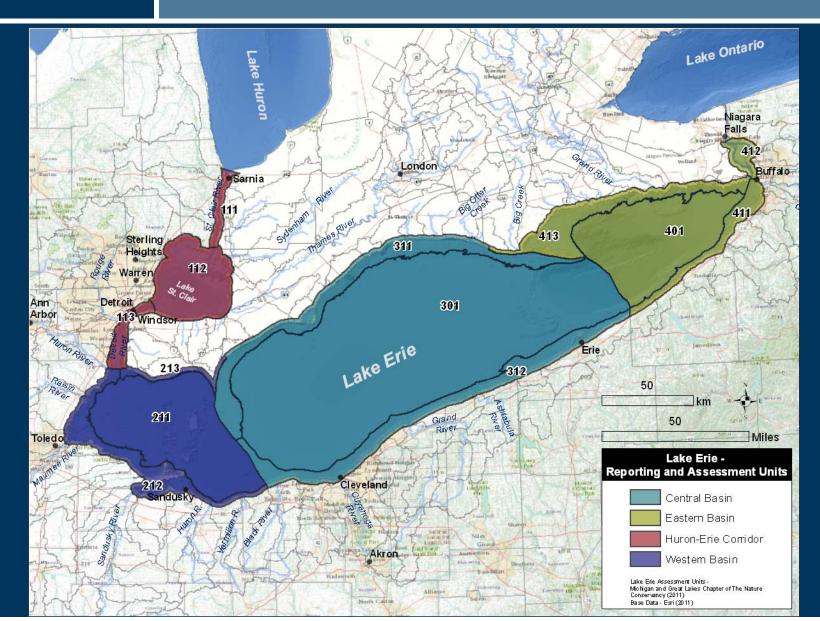
Planning

Developing Strategies & Measures

- Target viability
- Critical threats
- Situation analysis
- Objectives & actions
- Measures

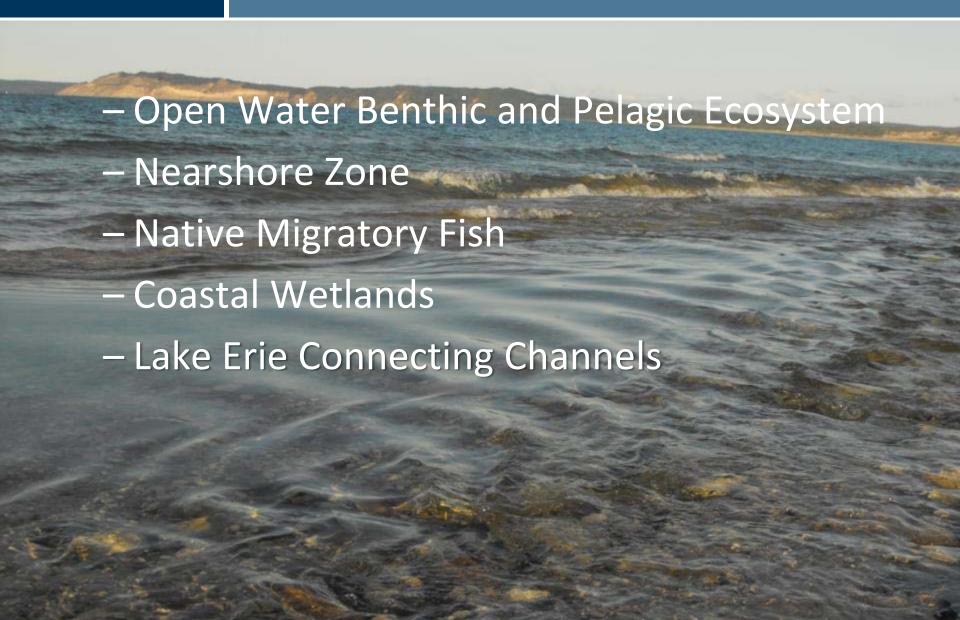
Implementing Strategies & Measures

- Develop workplans
- Implement actions
- Implement measures



Components of LEBCS

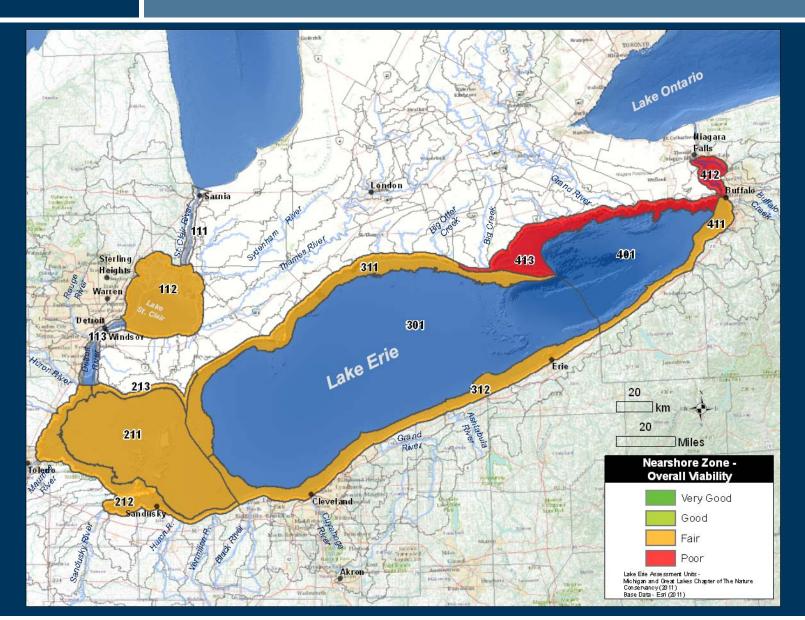
- Defining biodiversity conservation targets
- Assessing viability (current status and goals for future)
 - 110 indicators
- Critical threats
- Conservation strategies
- Priority areas (significant coastal biodiversity)
- Ecosystem services assessment
- Implementation recommendations



Providing greater resolution: Lake Erie Stratification Units

Aquatic Biodiversity Targets

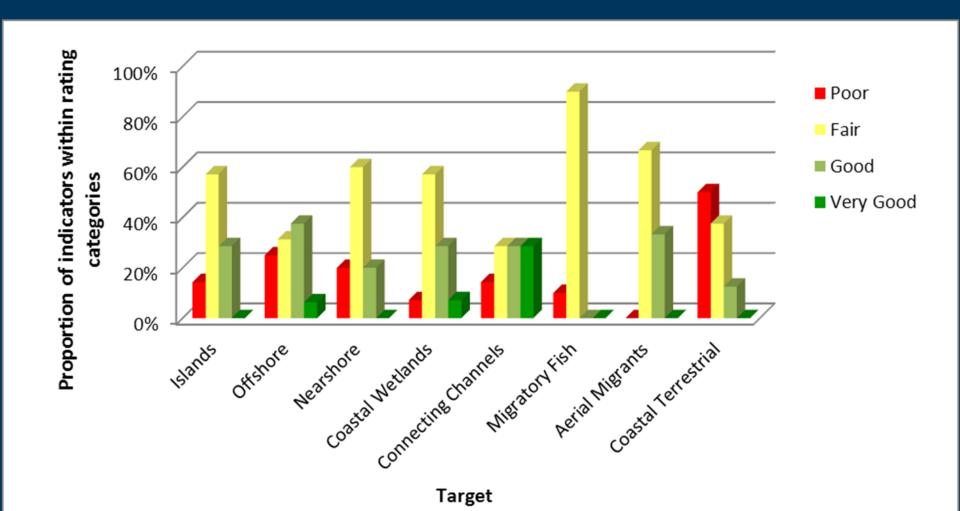
Terrestrial Biodiversity Targets



Current Viability Status: Nearshore Zone

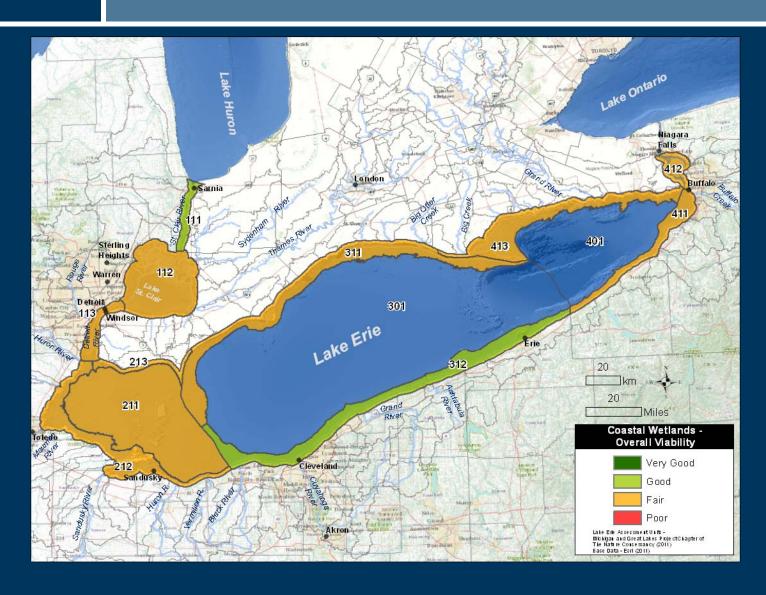
KEA Type	KEA	Indicator	Poor	Fair	Good	Very Good	RS	RU	AU	Current Value (Source)
Condition	Food web linkages	Hexagenia mean density in fine sediments (3 yr average)	<30 / m²	30-100 / m ² or >400 / m ²	101-200 / m ² or 301-400 / m ²	201-300 / m²		HEC	112	NA
								WB	211	NA
									212	NA
									213	NA
								СВ	311	(NS)
									312	(NS)
								EB ·	411	NA
									413	NA
Condition	Food web linkages	Mean densities of rotifers, copepods, and cladocerans in early summer (individuals/L)	Rotifers <100; Copepods <50; Cladocerans <35	Rotifers 100 - 150; Copepods 50 - 75; Cladocerans 35 - 50	Rotifers >150 - 300; Copepods >75 - 125; Cladocerans >50 - 75	Rotifers >300; Copepods >125; Cladocerans >75		HEC	112	NA
								WB	211	NA
									212	NA
									213	NA
								СВ	311	NA
									312	NA
								EB	411	NA
								LD	413	NA
Condition	Soil / sediment stability & movement (land context)	Bed load traps and groins (number of structures per 100 km of shoreline)	>100	>50 - 100	>25 - 50	0 - 25	EK ·	HEC	112	0 (IA)
									211	30.57 (IA)
								WB	212	154.18 (IA)
									213	6.19 (IA)
								СВ	311	1.16 (IA)
									312	291.28 (IA)
								ЕВ	411	30.22 (IA)
									413	4.56 (IA)

Current Viability Status: Nearshore Zone



Current status of biodiversity

Target	Huron-Erie Corridor	Western Basin	Central Basin	Eastern Basin	Lakewide
Nearshore Zone	Fair	Fair	Fair	Fair	Fair
Aerial Migrants	Good	Good	Fair	Fair	Good
Coastal Terrestrial Systems	Fair	Fair	Fair	Fair	Fair
Coastal Wetlands	Fair	Fair	Good	Fair	Fair
Connecting Channels	Fair			Fair	Fair
Islands	Fair	Fair	Good	Fair	Fair
Native Migratory Fish	Fair	Fair	Fair	Fair	Fair
Open Water Benthic and Pelagic Ecosystem			Fair	Fair	Fair
Overall Biodiversity Health	Fair	Fair	Fair	Fair	Fair



All "Fairs" are not created equal

Overall viability of Coastal Wetlands

Overall viability of Native Migratory Fish

Pollution: Urban/household

Threat assessment results: Lakewide Summary

	Huron – Erie	Western	Central Basin	Eastern
	Corridor	Basin		Basin
Invasive aquatics	Very High	High	High	High
Climate: habitat shifting/ alteration	High	High	High	High
Invasive terrestrial	High	High	High	High
Pollution: Ag/forestry	High	High	High	High
Housing/urban development	High	High	Medium	High
Shoreline Alterations	High	High	Medium	High
Contaminated sediments	Medium	Medium	Medium	High
Pollution: industrial	High	Medium	Medium	Medium

Medium

Medium

Medium

High

Strategies

- Reduce Agricultural Non-Point Source Pollutants
- Prevent, Detect, and Control Invasive Species (aquatic and terrestrial)
- Promote Compatible Housing & Urban
 Development and Shoreline Restoration
- Reduce Urban Non-Point and Point Source Pollutants
- Remove and Mitigate Dams and Barriers

Reduce Agricultural Non-Point Source Pollutants

Strategy 1: Target and intensify nutrient management BMPs to reduce Soluble Reactive Phosphorus loadings to Lake Erie

Strategy 2: Promote in-field management of drainage AND management of surface drainage channels to moderate discharge extremes and limit nutrient export

Prevent, Detect, and Control Invasive Species (terrestrial)

- 1: Assemble key regional partners to create a coordinated action plan by 2013
- 2: Coordinate regulation of Common Reed in Canada and the U.S.
- 3: Improve coordination of early detection and rapid response of Common Reed.
- 4: Enhance coordination of outreach and marketing.

Prevent, Detect, and Control Invasive Species (aquatic)

- 1: Develop common framework for control/ mgmt
- 2: Build political support for policies and regulations re: control and management
- 3: Improve coordination of prevention, early detection and rapid response
- 4: Demonstrate and quantify results of restoration

Promote Compatible Housing & Urban Development and Shoreline Restoration

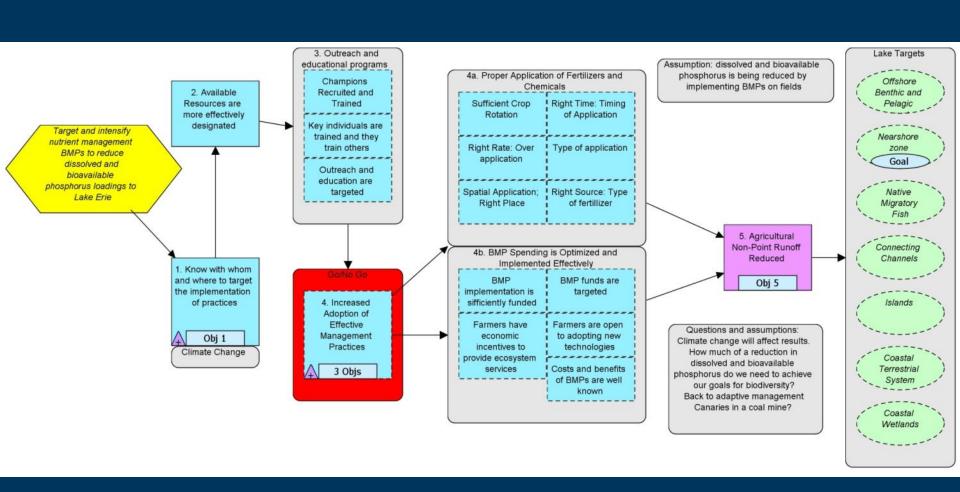
Coastal Conservation Strategies:

- Strategy 1: Build a Business Case for Coastal
 Conservation
- Strategy 2: Develop a Comprehensive
 Education/Outreach Shoreline Softening
 Program

Reduce Urban Non-Point and Point Source Pollutants

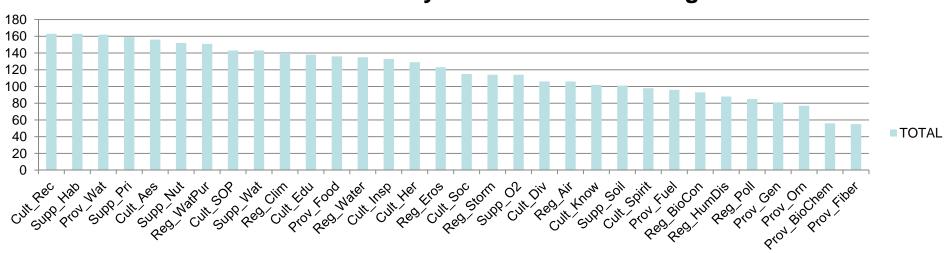
Strategy 1: Improve Stormwater Management

Strategy 2: Green Infrastructure



Remove and Mitigate Dams and Barriers

Strategy 1: Increase Connectivity to Lake Erie Focusing on First Barriers


Ag NPS Strategy 1

Ecosystems Services Assessment: Results of survey 1

What's needed now?

Review and adoption by the LE LAMP

Implementation

- Coordination
- Project tracking

Indicators

- Tracking
- Revision

Great Lakes Information Management & Delivery System

- Gateway to information
- Track progress

Returning to a Healthy Lake

An International Biodiversity Conservation Strategy for Lake Erie

20 Technical Report 20

The Nature Conservancy

Nature Conservancy of Canada

Michigan Natural Features Inventory

Prepared by the Lake Erie Biodiversity Conservation Strategy Core Team

Go »

Advanced Search

Conservation Planning

Conservation Practices

Conservation By Geography

Africa

Asia Pacific

Latin America

North America

Canada

United States

Alaska

Arizona

....

Colorado

Eastern Division

Michigan

Projects & Reports

Climate Change

Great Lakes Biodiversit

Migratory Birds

Montana

Orenna

West Virginia

Home » Conservation By Geography » North America » United States » Michigan » Projects & Reports » Great Lakes Biodiversity

Great Lakes Biodiversity Conservation Strategies

Home

The Nature Conservancy, working with the Michigan Natural Features Inventory and Nature Conservancy of Canada, has completed biodiversity conservation strategies —or "blueprints"—for Lakes Ontario, Erie, Huron and Michigan. Nature Conservancy of Canada has independently produced a biodiversity conservation assessment for Lake Superior.

The blueprints reveal that, overall, the nearshore and open waters, connecting channels, coastal wetlands, islands, and native migratory fish in the lakes face many challenges, but remain in restorable condition. Similarly, coastal areas such as beaches, bluffs, dunes, and shoreline forests are doing very well in some areas and poorly in others.

Critical problems for all lakes include:

- Aquatic and terrestrial invasive species
- · Dams and other barriers to passage of migratory fish
- · Hardened shorelines (except for Lake Superior)
- · Incompatible coastal development
- Pollution from agricultural and urban non-point sources

Lake Erie

Lake Huron

Lake Michigan

Lake Ontario

Lake Superior Supplied by Nature Conservancy of Canada

Questions?

