

On-Field Ohio!

Evaluate/Revise Ohio Phosphorus Risk Index

Elizabeth (Libby) Dayton, SENR, OSU Kevin King, USDA-ARS

OEPA Lake Erie Phosphorus Task Force One Major Finding

Agriculture is a primary source of P to Lake Erie

Research Needs

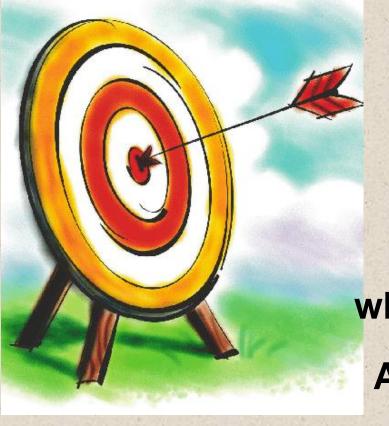
Consensus: Examine/Revise Ohio Agricultural P management Tools To reduce P transport

OEPA Lake Erie Phosphorus Task Force II Goal: Recommend P Loading Targets of WLEB

Final Report 2010

ODNR Distressed Watershed Rules Grand Lake St Marys

rand


P. Marys

http://www.dnr.state.oh.us/porta Is/12/water/watershedprograms/ GLSM/Watershed_in_Distres_Fa ctSheet.pdf

Lake Erie Western Basin

Ohio Agriculture is Being Targeted due to P transport into Ohio surface waters

P is culprit for harmful algal blooms

Ohio Agriculture CAN take the lead in protecting water quality while maintaining production

Avoid additional regulation Good Public Relations Good Stewardship

So What's the Path Forward?

On-Field Ohio

USDA-NRCS Nat'l **Conservation Innovation Grant**

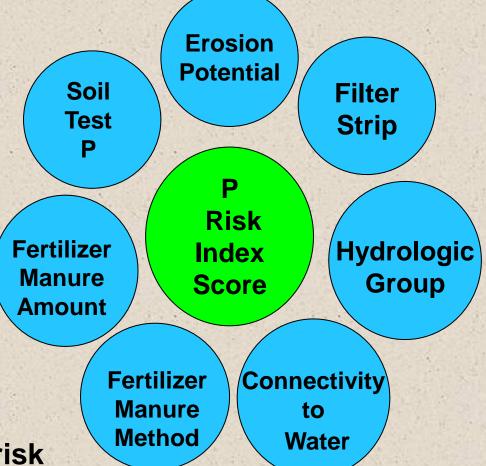
\$1 million Federal award \$1 million matching funds from Ohio farmers **Evaluation/Revision** of the Ohio Phosphorus Risk Index (Ohio P Index) Using Field-Scale, Edge-of-Field Monitoring Data

Project Objectives

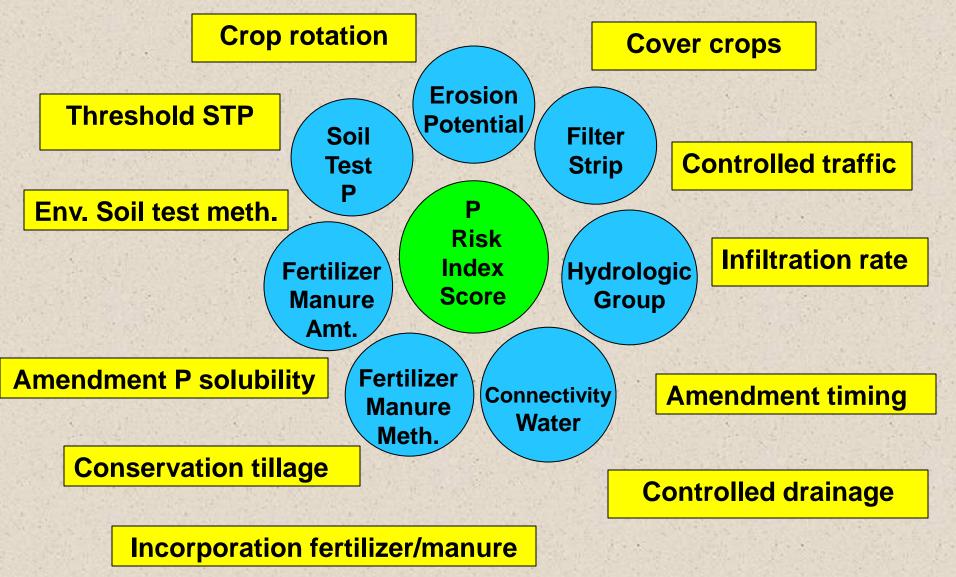
Because the Ohio P Index provides a field-scale estimate of *Risk* of P transport off farm fields

Used to judge performance !!

Objectives:


- 1. Evaluate/revise Ohio P Index, provide confidence that Ohio P Index scores accurately reflect risk of P transport at the edge-of-field
- 2. Increased management options (BMPs) integrated into the Ohio P Index for fields with high scores
- 3. Broad implementation of revised and improved Ohio P Index to protect Ohio surface water quality

1. Evaluate/Revise Current Ohio P Index: Ensure P Index Scores accurately reflect P transport RISK at the field-scale using, edge-of field monitoring


Current Parameters in *Ohio P Index to calculate scores

Low, medium, high & very high risk

*http://efotg.nrcs.usda.gov/references/public/OH/Nitrogen_and_Phosphorous_Risk_Assessment_Procedures.pdf

2. Integrate additional (BMPs) into P Index Give Farmers more management options:

3. Implement Revised Ohio P Index

On-Line Interactive Tool

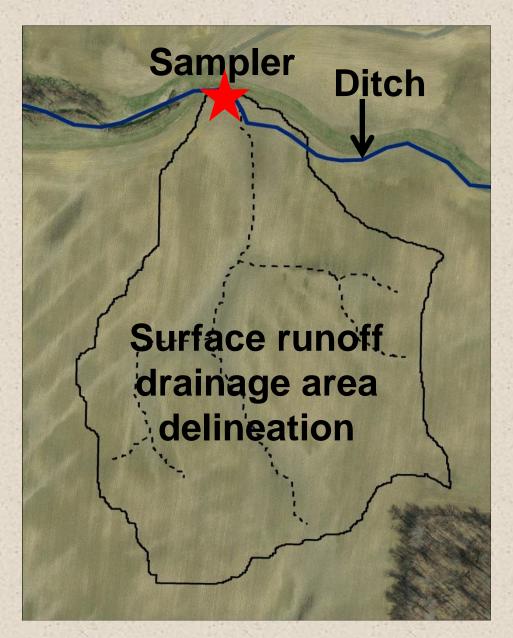
Develop easy to use online, interactive, GIS based tool so farmers can calculate their Index Score Further! Additional BMP options to choose from to reduce P transport risk and Ohio P Index score Important !! If a BMP NOT Officially in Ohio P Risk Index Farmer does NOT get CREDIT for it

Field Site Selection

Ohio = Transport Factors **Source Factors** + **P** Index **Runoff potential** Soil test P (STP) Score **Erosion potential** Planned P **Connectivity to water Application amount** Filter Strip yes/no & method Fairly "fixed" field/soil **Fairly Changeable** characteristic management practices

> Need robust distribution across study fields Similar to distribution in Ohio agriculture

Counties with Current/Pending Project Sites


Pending sites Current sites

- 8 in GLSM
- 8 in Scioto 12 in WLEB

Plan on minimum 30 sites Most with Surface and Sub-surface sampler

Special Thanks to our Participating Farmers

Surface Runoff Set-Up

- Delineate surface Runoff drainage area
- Install sampler
- Measure water flow
- Collect runoff samples

Sub-Surface Runoff Set-Up

- Install sampler
- Measure water flow
- Collect sub-surface runoff samples

Surface and Sub-Surface Samplers in WLEB

Data Collection Overview

- Field/Participating farmer management information
 - What they do, when and how, Yield
- Soil Physical Properties related to water infiltration
 - New consideration for P Index
 - Closer look at field water management
- Laboratory Analyses
 - Surface/Sub-Surface Runoff Samples
 - RTP, RDP, RTN, RDNH₄ and NO₃, Sediment
 - Soil Samples
 - STP (4 methods/2 depths) PAN, pH, TN/OC, texture, Total P

Soil Physical Properties "Quality" Data

Water Infiltration is the Key !! <u>Measured Properties</u>

Texture Aggregate Stability Bulk Density Organic Carbon Water Holding Capacity Penetration Resistance Saturated Hydraulic Conductivity % Residue Cover

As Related to Management Practices

As Related to Infiltration measured at the field-scale

In Other News

Evaluate Ohio N Leaching Procedure

- Relative Index rating of N leaching Potential
- Potential based on combining soil's hydrologic soil grouping & local county annual and seasonal (Oct. 1 to March 1) rainfall

Rating	N Leaching Potential
0 to 2	Low
3 to 10	Medium
10+	High
Tile drained	High

Conclusions

Ohio Agriculture is being TARGETED

- Need to REDUCE P load to Ohio surface waters
- Ohio farmers are actively engaged in being part of the solution
- A revised Ohio P Risk Index can play an important role in P management
- Once revised, the P Risk Index will only be effective if it is routinely utilized

Thank You !!

Questions ??

Libby Dayton, dayton.15@osu.edu

School of Environment and Natural Resources